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The present article provides a new proof of the Fukui conjecture concerning the additiv-
ity problem of the zero-point vibrational energies of hydrocarbons. This conjecture played
a prominent role in the initial development of the repeat space theory (RST), and continues
to be of vital significance in the recent development of the theory of the generalized repeat
space ¥, (g, d). The new proof of the Fukui conjecture has been given here by establishing
the functional version of the Asymptotic Linearity Theorem (ALT), the Functional ALT. This
enhanced version of the ALT directly impliesthe validity of the Fukui conjecture; it easily uni-
fies, in a broad perspective, a variety of additivity phenomena in physico-chemica network
systems having many identical moieties, and efficiently solves some interpretational problems
of the empirical additivity formulae from experimental chemistry. The proof of the functional
version of the ALT is based on anew method transferable to the extended theoretical frame-
work of the generalized repeat space %, (¢, d).

KEY WORDS: Fukui conjecture, repeat space theory (RST), additivity problems, Asymp-
totic Linearity Theorem (ALT)

1. Introduction

In his later years, Kenichi Fukui (1918-1998) presented several conjectures con-
cerning the additivity problems of molecules having many identical moieties. Among
them is the following which has been playing asignificant role in the development of the
repeat space theory (RST).

Fukui’s conjecture on the zero-point energy additivity. A theoretical foundation for
the empirical additive formulae for the zero-point vibrational energy of hydrocarbons
will be laid in a general mathematical theory by which one can prove the following
proposition.

Proposition |. Let {My} be afixed element of the repeat space with block-size ¢, and
let I be afixed closed interval on the real line such that 7 contains al the eigenvalues
259
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of My for al positive integers N. Let ¢1,2:1 — R denote the function defined by
@1/2(1) = |t]Y/2. Then, there exist real numbers o and B such that

Trg12(My) = aN + B+ o(1) (1.2)

aS N — oo.

In the present article, the mathematical part of Fukui’s conjecture on the zero-point
energy additivity, namely proposition I, shall be referred to as “the Fukui conjecture”.

The main purpose of this article is to give a new proof of the Fukui conjecture
by what we call the functional version of the Asymptotic Linearity Theorem (ALT), or
the Functional ALT for short. Thistheorem has first been presented in [1], however, its
proof was yet to be made public. The present article publicizes, for the first time, a de-
tailed proof of the Functional ALT. This enhanced version of the ALT directly implies
the validity of the Fukui conjecture; it easily unifies, in a broad perspective, a variety of
additivity phenomena in physico-chemica network systems having many identical moi-
eties, and efficiently solves some interpretational problems of the empirical additivity
formulae from experimental chemistry (cf. the preceding article [2, sections 2 and 3]).

The investigations of the vibrational energy additivity of hydrocarbons have a his-
tory of severa decades. To understand the origin and development of the research of
vibrational energy additivity problems, which are closely related to thermodynamic ad-
ditivity problems, the reader isreferred to the phenomenological studies of experimental
chemists (cf. [3—7] and references therein). The reader is aso referred to investigations
of the additivity problems of the total pi electron energies [8-21], which had long been
investigated separately from the vibrational energy additivity problems of hydrocarbons
until the notion of the repeat space (with block-size ¢) X, (¢) was utilized.

In section 2, we review the notion of the repeat space (with block-size ¢) X, (¢),
and in section 3, chronologically review the ALTs that imply the Fukui conjecture. In
section 4, we formulate a problem whose solution, by what we call the Compatibility
Theorem, streamlines the proof process of al the different versions of the ALT. Sec-
tion 5 provides a proof of the Functional ALT assuming the validity of the Compatibility
Theorem. Section 6 establishes the notion of standard alpha space (with block-size ¢)
X, (q) and prepares other preliminaries for the Compatibility Theorem whose proof is
givenin section 7.

2.  Review of the repeat spac«, (q)

Throughout, let Z*, R, and C denote respectively the set of al positive integers,
real numbers, and complex numbers; and the symbol K will denote either R or C. By
“for dl N > 07, we mean “for al positive integers N greater than some given positive
integer”.

Inwhat follows, we review the notion of the repeat space (with block-size ¢) X, (¢),
according to [22] in which this notion was first established. We remark that the repeat
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space X, (¢g) can be also defined within the framework of the extended setting of the
generalized repeat space %, (g, d) (cf. [1]).

Fixag € Z*, and let X (¢) denote the set of all matrix sequences whose Nth term
My isan arbitrary gN x gN rea symmetric matrix, N € Z*. This set obviously con-
gtitutes alinear space over the field R with term-wise addition and scalar multiplication

My} + My} ={My + M}, (2.2)
k{Mn}={kMy}, (2.2)

N e Z".

We defined three fundamental linear subspaces X, (¢), X,(g), and Xz(q) of X(g).
The subspace X, (¢) is defined to be the set of all matrix sequences {My} € X (g) such
that foral N > O,

MN:AN+BN7 (23)
where Ay, By aregN x g N real matrices having the partitioned forms given below:
Qo Q1 - < Oy Oy ~ 02 0
01 Qo 01 - -0y : . 02
. 0_1 . . . . . 0_, .
. . . . . . . . 0 0_,
Oy
Oy
Ay =
N QU 9
. Qv
Oy 0 . .
02 : Oy 0y : . 01 Qo 01
01 Q02 - QO 0y . : 0O-1 Qo )
(2.9
where v is a nonnegative integer, 0_,, O_,11,..., Q, &€ g x g rea matrices, v and

0, are congtant and independent of N. Ay isdefinedforall N € Z* with N > 2v + 1.
(Notethat Q_, isthetransposeof Q, foraln € {0,1,...,v})
For al N > 0, we can equivalently write A in aconcise form:

Ay =) Pi® Q.. (2.5)

n=—v

where Py denotesan N x N real-orthogonal matrix given by

01 0 ... 0
00 1 :

Po=|: : - 0 (2.6)
00 0 1
10 0 0
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Thematrix Py withn € {—2, =3, ...} isdefined to be (P,;l)*", which equals the trans-
pose of P", and the symbol ® denotes the Kronecker product.
The matrix By hasthe form

Wy W,
By = ( 0 ) ; (2.7
W3 Wy

where Wy, Wy, W3, and W, are gw x qw real matrices, w € Z*; and w and W; are
constant and independent of N. By isdefined for all N € Z* with N > 2w.

Similarly, X, (q) is defined by setting My = Ay in equality (2.3), and Xz(g) by
setting My = By.

Note that in the linear space X (¢), the subspace X, (¢) is the sum of the linear
subspaces X, (¢) and Xg(g). One can equivalently define X, (¢) to be the sum of these
subspaces after defining them first.

We called X, (q), Xu(g), and Xz(g), respectively, the repeat space, alpha space,
and beta space with block-size ¢, and each element of X,(g), X,(g), and Xz(g), re-
spectively, arepeat sequence, an apha sequence, and a beta sequence with block-size g.

3.  The Asymptotic Linearity Theorems that imply the Fukui conjecture

In this section, we chronologically review the ALTs from which the validity of the
Fukui conjecture follows.

We need to recall some symbols used in the theorems.

Let M beann x n Hermitian matrix and let ¢ be area-valued function defined on
asubset S C R such that the subset S contains all the eigenvalues of M. Let

M = u1Pay + - + wu, P (3.1)
be the spectral resolution of the Hermitian matrix M, where w4, ..., u, aredl the dis-
tinct eigenvalues of M and Py, ..., P are corresponding eigenprojections. Then, we
define (M) by

(M) = o(u1) Pay + - -+ + o) Py (32

Thefact that it iswell defined is easily seen by the uniqueness of the spectral resolution.

Remark 3.1. (i) The matrix ¢ (M) can be equivaently defined by
o(M) = Udiag(p(A1), p(12), .., p(t))U ™, (33)
where U isann x n unitary matrix such that
U™IMU = diag(r1, A2, ..., An). (3.4)
Note that
Tro(M) =Tr(Udiag(¢(h1), 9 (), ..., 9 () U ™)



S Arimoto / New proof of the Fukui conjecture 263
=Tr(UUdiag(p(h1), 9(12), ..., p(n)))

= 004, (35)
i=1

where Tr denotes the trace operation.
(il LetI =[a,b] (a,b € R, a < b) denote aclosed interval that contains al the
eigenvalues of M. If ¢ : 1 — R isapolynomia function with rea coefficients defined

by
o) = cot® + catt + - - - + et (3.6)
then the matrix ¢ (M), defined by (3.2) or (3.3), is expressed by

o(M) = coM® 4+ c1M* + -+ - + e, M, (3.7)

where M° denotes then x n unit matrix.

Let {My} € X,(g). A closed interval I C R is said to be compatible with {My}
if al the eigenvalues of My are contained in I for all N € Z*. Given an {My} €
X, (g), the following proposition guarantees the existence of aclosed interval 7 whichis
compatible with {My} € X, (g).

Proposition 3.1. Let {My} € X,.(q). Let o(My) denote the set of al the eigenvalues
of My. Thenthe union ., o0 (My) isabounded setin R.

Proof. This is easily verified by using a matrix norm [23,24] defined by |[L| =
max{Z’;:1 [Lijl: i € {1,2,...,n}} forann x n matrix L. This norm gives an up-
per bound for the absolute values of the eigenvalues of L, i.e., if A is an eigenvalue
of L, then |A| < ||L]|. Now, consider the real sequence {||My||}. Then paying atten-
tion to the repeating block pattern of My aong the diagonal, we see immediately that
Mol = lIMngsall = - - - for some No € Z*. It clearly follows that | y.,+ o (My) isa
bounded set in R. O

Remark 3.2. (i) The boundedness of the union ., + o (My) can be demonstrated in a
broader context of the generalized repeat space; see [25, proposition 4.8].

(i) Let I = [a,b] (a,b € R,a < b) denote a closed interval. A function
9.1 — R is sad to be absolutely continuous on I if, given any ¢ > 0, there
exists a § > 0 such that for every finite system of pairwise disoint subintervals
(a1, b1), (az, b2), ..., (a, by) C [a, b],

Y i —a) <8 (3.8)

k=1
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implies
n
D o) — plan)| < e (39)

k=1

(iii) If ¢ : I — R isLipschitz continuous, then ¢ is absolutely continuous on 1.

(iv) If ¢: I — R isabsolutely continuous, then ¢ is continuous and of bounded
variationon 1.

(V) It is easy to show that if £ isapositive real number and ¢;: : I — R is defined

by
e (1) = |1, (3.10)
then ¢; is absolutely continuous on /.

Notation 3.1. Let I = [a, b](a, b € R, a < b) denote aclosed interval.
Vi(p): the total variation of area-vaued functiongp on 1, i.e.,

, (3.11)

Vig) =sup Y |o(t) — p(ti-1)
Ao
A a=l‘0<t1<"'<tn:b'

BV (I): the set of all real-valued functions of bounded variation on 1, i.e., the set of
all real-valued functions ¢ on I such that V;(p) < oo.

CBV(I): the normed space of all rea-valued continuous functions of bounded varia-
tion on I equipped with the norm given by

loll = sup{le()]: t € I} + Vi(p). (3.12)
AC(I): the normed space of al rea-valued absolutely continuous functions on 1
equipped with the norm given by
lell = sup{|@)|: 1 € I} + Vi(9). (3.13)
P(): the set of all polynomia functions with real coefficients defined on 1.

the closure operation on atopological space.

B(X,Y): thenormed space of all bounded linear operators from a normed space X to
anormed space Y.

CBV()*. thedua space of CBV(I),i.e.,
CBV(I)* = B(CBV(/), R). (3.14)
AC(D)*:  thedud space of AC(1),i.e.,
AC(I)* = B(AC(I), R). (3.15)



S Arimoto / New proof of the Fukui conjecture 265

We retain the above notation 3.1 throughout this article. We remark that if £ de-
notes a normed space, we also let E stand for the underlying set of the normed space
when no confusion arises. The following proposition has been of fundamental impor-
tance in the development and applications of the ALTSs.

Proposition 3.2. The notation being as above, the closure of P (I) in the normed space
CBV (1) coincides with the underlying set of the normed space AC(I), in symboal,

AC(I) = P(I) C CBV(I). (3.16)

Proof. See [26] for a detailed proof of the proposition (also for the applications of
theorem 3.3 to thermodynamic additivity problems). a

Note that AC(7) forms a subspace of the normed space CBV (7).

Recall that area sequence Ey is said to have an asymptatic line if there exist «,
B € Rsuchthat Ey — (N +8) — 0asN — oo, i.e, if thereexist o, B € R such that
Ey =aN + B +0(1),as N — oo, where o(1) denotes the Landau notation.

Now we are ready to chronologically review the ALTs from which the validity of
the Fukui conjecture follows.

Theorem 3.1 (Original ALT, X,(g)-version and the “¢q/o-proposition”: (ii)). Let
{My} € X,(g) be afixed repeat sequence, let I be a fixed closed interval compatible
with {My}. Then we have

(i) Forany ¢ € P(I) C CBV(I), Tro(My) has an asymptotic line.

(i) @12 € P(I) C CBV(I), where g1/5(t) = |t|*/2.
Proof. The first proof of this theorem was given in [27, chapter 7] according to the
method and outline of the proof described in [22]. (Let & be any positive real number,

define ;1 1 — R by (3.10), therelation ¢ € P(1) C CBV(I) was also proved in [27,
chapter 7].) a

Theorem 3.2 (Original ALT, X,(q)-version). Let {My} € X,(gq) be a fixed repeat
sequence, let I be a fixed closed interval compatible with {My}. Then, for any
¢ € P(I) C CBV(), there exist a(¢), B(¢p) € R such that

Tro(My) = a(p)N + B(p) +0(1) (3.17)
aS N — oo.
Proof. A proof using diagrams of arrows was given in [28]. (The method using di-

agrams of arrows has played an important part in the RST, and this method originates
in [28]. Cf. also remark 4.1 in section 4.) g
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Theorem 3.3 (Practical ALT, X, (q)-version). Let {My} € X,(g) be afixed repeat se-
guence, let I be afixed closed interval compatible with {My}. Then, for any ¢ € AC(1),
there exist o (¢), B(¢) € R such that

Tro(My) = a(¢)N + B(p) + o(D) (3.18)

aS N — oo.

Proof. Theconclusion immediately followsfrom theorem 3.1 (or theorem 3.2) together
with proposition 3.2 (cf. [26]). a

Theorem 3.4 (Functional ALT, X, (g)-version). Let {My} € X,(g) be afixed repeat
sequence, let I be afixed closed interval compatible with {My}. Then, there exist func-
tionasa, B € AC(I)* = B(AC(I), R) such that

Tro(My) = a(¢)N + B(p) + o(D) (3.19)

asN — oo, foral ¢ € AC(I).

Theorem 3.1, which explicitly shows that the Fukui conjecture is true, was first
proved in[27, chapter 7]. The generic name “Asymptotic Linearity Theorem” originates
in theorem 3.1, which contains the words “asymptotic line” in its assertion.

once g1, € P(I) C CBV(I) was established and the extensiveness of the P (1)
was recognized, the “¢1/,-proposition” began to be omitted in the subsequent versions
of Asymptotic Linearity Theorems.

We may now summarize the relationship between theorems 3.1, 3.2, and 3.3, as
follows:

e theorem 3.1 = theorem 3.2.
e theorem 3.2 and proposition 3.2 = theorem 3.3.

We may also summarize the relationship between the Functional ALT, theorems 3.1-3.3,
and the validity of the Fukui conjecture, asfollows:

e Functional ALT (theorem 3.4) = theorems 3.1, 3.2 and 3.3 = the Fukui con-
jecture.

Remark 3.3. The author is indebted to Professors M. Spivakovsky, K. Saito and
I. Naruki, who provided him with an important lemma (Piecewise Monotone Lemma)
which has been indispensable for establishing any version of the ALTs that imply the
Fukui conjecture.
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4. Formulation of a problem and fundamental theorems for the proof of the
Functional Asymptotic Linearity Theorem

We begin this section by formulating a problem whose affirmative solution given
in section 6 will streamline our argument in handling key inequalities essential for es-
tablishing any version of the ALTsthat can prove the Fukui conjecture.

Let {My} € X,(g) and let I be a closed interval compatible with {My}. Let
{An} € Xo(g) and {By} € Xp(q) besuch that

{My} = {An} + {Bn}. (4.2)

Let J beaclosed interval which contains 7 and is compatible with both {My} and {Ay}.
By considering two such intervals I and J and the associated functional spaces CBV (1)
and CBV(J), we could define the quantities ¢ (My) and ¢(Ay) with ¢ € CBV(J) and
could obtain key inegqualities for the proof of the Original ALT. However, if thefollowing
problem is affirmatively solved, the proofs of both the Original and Functional ALTscan
be simplified.

Problem I. Let {My} € X,(g). By suitably selecting {Ay} € X.(g) and {By} € Xg(q)
under the condition (4.1), can we dispense with the extended interval J and its associated
functiona space CBV(J) so that we can only consider 7 and CBV(7)? In other words,
is the following statement true?

Statement I. Let {My} € X,(¢q) and let I be a closed interval compatible with {My}.
Thenthere exist {Ay} € X, (g) and {By} € Xp(q) suchthat {My} = {Ax} + {By} and
such that I isaso compatible with {Ay}.

We remark that statement | is true. In the end of section 6, we shall prove state-
ment | using what we call the Compatibility Theorem (theorem 6.1), whose proof is
given in section 7. In section 5, we provide a proof of the Functional ALT assuming the
validity of statement I. (We note that only the reader who is familiar with the compati-
bility problem should read sections 6 and 7 first before reading section 5.)

In what follows, we recall the Polynomia ALT (theorem 4.1) from [22,28] and
its logical precursor: theorem 4.2 from [22]. We aso establish a topological closure
extension theorem, theorems 4.3 and its logical precursor: theorem 4.4. These four
theorems (theorems 4.1-4.4) are of fundamental significance for proving and gaining a
logical insight into the assertion of our main theorem, the Functional ALT.

Remark 4.1. The reader is referred to [1,22,28] for the following two complementary
unifying approaches:

(i) the approach viathe aspect of form,
(i) the approach viathe aspect of genera topology,
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which originate in[22] and have played acentral rolein the RST to systematically obtain
solutions for avariety of additivity and network problems. We remark that theorems 4.1
and 4.2 correspond to (i) and theorems 4.3 and 4.4 correspond to (ii). We also remark
that in the recent development of the RST, “the approach using diagrams of arrows’,
which originates in [28] has been incorporated into (ii).

Theorem 4.1 (Polynomial ALT, X, (g)-version). Let {My} € X,(q) be afixed repeat
sequence. Let 7 be afixed closed interval compatible with {My}. Then, for any ¢ €
P(I) there exist a(¢), B(¢) € R such that

Tro(My) = a(p)N + B(p) (4.2)
foral N > 0.

Proof. The conclusion immediately follows from the definition of X, (¢) and the fol-
lowing theorem 4.2 (cf. aso [22,28]). a

Theorem 4.2. Let {My} € X,(g) be afixed repeat sequence. Let I be afixed closed
interval compatible with {My}. Suppose that ¢ € P (1), then we have

leMy)} € X (g). (4.3)

Proof. Supposethat ¢ € P(I) andisgiven by

o(t) = cot® + -+ + cut”, (4.4)
where n isanonnegative integer and ¢y, . . ., ¢, € R. Note that
leMy)} = {coMy + -+ + ca M} } (4.5)
and that
{MJ} = {gN x gN unit matrix} € X, (q). (4.6)

Since X, (¢g) isalinear space, to show that (4.3) istrue, we have only to verify that

(M} e X (q) (4.7)

for each m € Z*. But, (4.7) can be easily proved by induction on m, bearing in mind
the fact that X, (¢) is closed under the Jordan product operation o defined by

{Ky}o{Ly} = {3(KnLy + LyKy)}. (4.8)
(cf. [22] for details). a
Theorem 4.3. Let K denote either the rea field R, or the complex field C. Let X be

a normed space over K, let % be a Banach space over K, and let ty € B(X, %) be a
sequence of bounded linear operators from X to 9. Let L denote the topological space
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with the underlying set {T', F} and the system of open sets oy = {&, {F},{T, F}}.
Consider the mapping = : X — L defined by

T if {zy ()} isconvergent,

n(p) = {F if {zx ()} isnot convergent. 49

Suppose that
sup{lizvll: N > 1} < oo. (4.10)
Then, the following statements are true:
(i) m iscontinuous.
(i) If Xoisasubset of X with 7w (Xo) = {T}, then 7 (Xo) = {T}.

(iii) If Xgisadense subset of X with 7 (Xg) = {T}, then 7 (X) = {T}, moreover,
7:X — B defined by t(¢) = limy_ o tv (@) is abounded linear operator:
T e B(X,®B).

Proof. (i) Under the assumptions of the theorem, consider the mapping 7o: X — L
defined by

T if {zn(¢)} isaCauchy sequence,

7o(¢) = { F if {ty(p)} isnot a Cauchy sequence. (4.11)

Then, because % is complete, we see that
T = . (4.12)

But, theorem 4.4 below implies that 7 is continuous. Hence, 7 is continuous.

(i) Suppose that X is a subset of X with 7(Xg) = {T}. Then by (i), we have
7(Xg) C w(Xo) . Thisimplies that 7 (Xo) C {T'}. The opposite inclusion 7 (Xo) D {T'}
is obvious.

(iii) By (ii), it remains to prove that the operator 7 islinear and bounded. Since ty
islinear, the linearity of 7 is obvious. The boundedness follows from the relations:

=)= im, wvo]
= Jim ey ()]

= lim H v (p) H
N—oo

<( tim Jex | ) el
N—o0

< (sup{lienll: N > 1})llgll. (4.13)
(]

Theorem 4.4. Let K denote either the real field R, or the complex field C. Let X and
Y be normed spaces over K and let Ty € B(X,Y) be a sequence of bounded linear
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operators from X to Y. Let Y°° denote the normed space of al the sequences {ay} inY
with sup{|llax|l: N = 1} < oo, equipped with the norm given by

[{an}| = sup{llanll: N > 1}, (4.14)

and let L denote the topological space with the underlying set {T', F'} and the system of
opensetsor = {3, {F},{T, F}}. Let 1g: X — L beamapping such that the following
diagram is commutative:

o

X L
6
Cy
YOO
Diagram 1.
That is, let
S 770 = Cy o 6. (4.15)

Here, 6 and Cy are defined by

0(p) ={tn (@)}, (4.16)

T if {ay}isaCauchy sequence,

Cy(lan}) = { F if {ay} isnot aCauchy sequence. (4.17)

Suppos that sup{lltyll: N > 1) < . (4.18)

Then, 7q is continuous.

Proof. We first show that 6 is continuous. It is easy to see that 0 is linear. Hence,
it suffices to verify that 6 is bounded. Assume that sup{|zyll: N > 1} < oo, and let
¢ € X. Then we have
@)1l = [{zv @)}
=sp{[ev@)]: N > 1)
< (sup{lizwll: N = 1})lell, (4.19)
which shows that 0 is bounded.

Second, we verify that the mapping Cy is continuous. Consider the following dia-
gram Il, where 8’ and 6” are defined by

0/({61,,}) = NloiLnOO SJp{”am —apll: m,n > NO}a (4.20)
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T ifx=0,

0"(x) = { F ifx#0. (4.21)
L
o o
Yo a R
Diagram I1.

Note first that diagram 11 is commutative and 6" is clearly continuous. Thus, to verify
that Cy is continuous, it suffices to show that 6’ is continuous. The continuity of 6’
easily follows from the fact that 6’ is a semi-norm on the linear space Y*°, i.e., #' isa
real-valued mapping on Y *° which satisfies the following relations for al a, b € Y*° and
k ek

0'(a) >0, (4.22)
0'(ka) = k|6’ (a), (4.23)
0'(a+b) <0 (a) +0'(b). (4.24)

From this, we easily havefor al a, b € Y™

|0"(a) — 6" (b)| < 6'(a — D), (4.25)
and hence

|6"(@) — 0'(b)| < 2lla — b (4.26)

which implies that 6’ is Lipschitz continuous and thus continuous. Now the continuity
of Cy has been proved.

By (4.15), 7o = Cy o 6, and we have verified that both 6 and Cy are continuous.
Therefore, mg IS continuous. O

Remark 4.2. We remark that theorems 4.3 and 4.4 and their proofs can be used to gain a
deeper insight into lemma 3.2 and the topological closure extension procedures given in
[29], and that theorems 4.3 and 4.4 here established can be applied to similar extension
procedures given in [25,29-31].

Therest of this section is devoted to establishing theorem 4.5 by using theorems 4.1
and 4.3. We note that theorem 4.5 is used to formulate theorem 5.1 in section 5 (cf.
remark 5.1). Thereader isreferred to [32] for the original form of theorem 4.5, and aso
to [25,29-31] for generalizations of theorem 4.5.
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Notation 4.1. Let I = [a, b] (a, b € R, a < b) denote aclosed interval.

C(I): the normed space of all real-valued continuous functions on 7 equipped with
the uniform norm given by
lellu = sup{|e®)|: ¢ € I}. (4.27)
C(D)*: thedua spaceof C(1),i.e,
C()* = B(C(),R). (4.28)

Theorem 4.5 (Functional Alpha Existence Theorem, X,(g) version). Let {My} €
X, (q) beafixed repeat sequence, let I be afixed closed interval compatible with {My}.
Then, there existsafunctional « € C(I)* = B(C(I), R) such that
TroM
T — () + o) (4.29)

asN — oo, foral ¢ € C(1).

Proof. Define the sequence of linear functionalsay € C(I)* = B(C(I), R) by
Tro(My)
—N

Recall the Stone-Weierstrass theorem, which implies that P(I) is a dense subset of
c():

ay(p) = (4.30)

P() =C). (4.31)
Itiseasy to check that
(A1) fordl ¢ € P(I),limy_ o ay(p) existsin R,
(A2) sup{llayll: N > 1} < oo,
(A3) foral ¢ € C(I), limy_ o an(p) eistsinR,
(A4) o:C(I) — R defined by

a(p) = lim ay(p) (4.32)
isabounded linear functional: @ € C(1)* = B(C(I), R).

Infact, (AL) follows from theorem 4.1, (A2) from the easily verifiable relations

lan (@) < g(supfle®)]: t € 1}) = qllell (4.33)
validforal ¢ € C(I) and N € Z*. Note that (4.31), (A1), (A2), and theorem 4.3(iii)
imply (A3) and (A4). From (A4) the conclusion follows. O

We recall remark 4.1 and note that the above proof of theorem 4.5 (Functional
AET) has been made by using (i) the approach via the aspect of form (in conjunction
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with theorems 4.1 and 4.2) and (ii) the approach via the aspect of general topology
(in conjunction with theorems 4.3 and 4.4). The above proof of the Functional AET
using unifying approaches (i) and (ii) is prototypical for the proofs of diverse existence
theorems in the RST. The insights it provides are crucia for understanding the next
section.

In section 5, we shall use this prototype as a guideline for establishing our main
theorem, the Functional ALT.

5. Proof of the Functional Asymptotic Linearity Theorem

There are a number of ways of proving the Functional ALT with varying degrees
of dependence on the original ALT. Here, we shall prove this theorem without using the
Original ALT.

Before proving the Functional ALT, we need some preparation.

Theorem 5.1. Let {My} € X, (g) and let I be aclosed interval compatible with {My}.
Given {Ay} € X,(g) and {By} € Xp(q) such that

{My} = {An} + {Bn}, (5.1)
let J beaclosed interval which contains I and is compatible with both {My} and {Ay}.
Define the sequence of functionals 8, € CBV(1)* = B(CBV(I), R) by
B () =Tro(My) — o' (9N, (52)
where

Tro(My)

Iy — i
a' (@) = IJI—>moo (5.3

Similarly, define the sequence of functionals 8y, € CBV(J)* = B(CBV(J), R) by
Bx (@) =Tro(My) —a’ (@)N, (5.4)
where

Tro(My)

ol () = Nlim (5.5)

Let 8\ denote the restriction of 8/, to the subspace AC(1) of the normed space CBV (I):

v = ﬁl]V|AC(1)' (5.6)
Then, we have
@) sup{|Bx|: N =1} < oo, (5.7)
(i) sup{||By]: N =1} < oo, (5.8)
(i) sup{[ By’ |: N =1} < . (5.9)
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Remark 5.1. (i) To see that the above o/ (¢) and o’ (¢) are well defined, recall theorem
4.5 and notice that CBV(I) c C(I).
(ii) To seethat B3 € CBV(I)*, note that the following relations:

1By (@) < [Tro(My)| + |/ (@)N|
<2gN(sup{le®)|: t € I})
<2gN(sup{le®)|: t € I} + Vi(9)) = 29N |lgl| (5.10)

hold for all ¢ € CBV(/) and N € Z". Hence, B, € CBV(I)*, and similarly we have
B € CBV(J)*foral N € Z*.

Proof of theorem 5.1. (i) This immediately follows from inequality (13) in [27, chap-
ter 7, p. 198]. (Weremark that thisis also an immediate consequence of proposition ES#
in[28, p. 230].)

(ii) Werecall statement |, which was given in section 4 and is going to be proved in
section 6 via the Compatibility Theorem. Notice that statement | implies that there exist
{AN} € Xo(q) and {By} € Xp(g) such that (5.1) istrue and such that interval I is also
compatible with {A}. Consider such special {Ay} € Xq(g) and {By} € Xz (q), and set
J = I'in (i) to obtain (ii).

(iiii) It is easy to see that || 8[| < |I8% ]l for all N € Z*, which obviously implies
that (iii) istrue. a

Once the Compatibility Theorem is established and we see that statement | istrue,
consideration on the extended interval J and its associated functional space CBV(J) be-
come unnecessary. However, the following proof of theorem 5.1, part (ii), is instructive
to understand one of the methods to overcome the “ compatibility problem” in the proofs
of the Original and Functional ALTSs.

The second proof of theorem 5.1(ii). Consider the mapping T : CBV(I) — CBV(J)
defined by

pla@) ifxelA, a),
T(p)(x) =1 e) ifxela,bl, (5.11)
@(b) ifx € (b, B,

where I = [a,b], J = [A, B], A < a < b < B. Itiseasly verified that T islinear and
bounded satisfying the relation

1T = llel (5.12)
for all ¢ € CBV(I). Note that
By =ByoT, (5.13)
and that
By < |Bu] | T@] = [Bv]]e]. (5.14)
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for al ¢ € CBV(I). Hence, we have

I8 ] < 183l (5.15)
which together with (i) implies (ii). O

We are now ready to give a proof of the Functional ALT.

Proof of the Functional ALT. Define the sequence of linear functionals ey € AC(1)* =
B(AC(I), R) by

Tro(My)
— N
Recall the fact that P (1) is adense subset of AC(/):

P(I) =AC) (5.17)

ay(p) = (5.16)

(cf. proposition 3.2).
It is easy to check that

(@) fordl ¢ € P(I), limy_ o ay(p) existsin R,
(@2) sup{llen|: N > 1} < oo,
(@3) foral ¢ € AC), limy_ o ay(p) existsinR,
(ad) a:AC(I) — R defined by
a(p) = lim ay(p) (5.18)
isabounded linear functional: o € AC(1)* = B(AC(I), R).

In fact, statement (al) follows from theorem 4.1 and statement (a2) follows from
the easily verifiable relations

lan(@)| <q(sup{le®)]: 1 € I})
<q(supfle®]: t € 1} + Vi) = qliol (5.19)

valid for al ¢ € AC(I) and N € Z*. Note that (5.17), (al), (a2), and theorem 4.3(iii)
imply (a3) and (a4).

Using equality (5.18), define the sequence of linear functionals By € AC(I)* =
B(AC(I),R) by

Bn(p) = Tro(My) — a(p)N. (5.20)
We now verify that
(b1) foral ¢ € P(I),limy_ o By(p) existsinR,
(b2) supflipnll: N =1} < oo,
(b3) forall ¢ € AC(D), limy_, « Bn(p) EXistsinR,
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(b4) B:AC(I) — R defined by
Ble) = lim By(e) (5.21)
isabounded linear functional: 8 € AC(I)* = B(AC(I), R).

It is easily seen that (bl) follows from theorem 4.1 and that (b2) follows from
theorem 5.1(iii). Note that (5.17), (b1), (b2), and theorem 4.3(iii) imply (b3) and (b4).
From (a4) and (b4) the conclusion of the theorem follows. a

6. Notion of the standard alpha spaceXy, (¢) and other preliminaries for the
Compatibility Theorem

We begin this section by recalling a couple of notions from [20], which are sum-
marized in definitions 6.1 and form a basis for what follows.

Definitions 6.1. Fix ag € Z*, and let h(g) denote the linear space over the field R of
al g x g Hermitian matrices, and let H (¢) denote the set of all mappings F: R — h(g),
i.e, theset of al ¢ x ¢ Hermitian-matrix-valued functions defined on thereal line. Let
Hy(q) C H(q) denote the subset of al mappings F that have the form of afinite Fourier
series:
F@O)= ) (exp(in®))Q,. Q,=0;, n=01....v, (6.1)

6 € R, where v isanonnegative integer, Qo, Q1, ..., Q, aredl g x g real matrices and
Q! denotes the transpose of Q,.

DefineQ2: X, (q) — Hy(g) by thefollowing procedure. Givenany {My} € X,(q),
then by the definition of the repeat space, there is a pair of sequences {Ay} € X, (q),
{Bn} € Xg(q) whose sum equals {My}, and a nonnegative integer v and matrices
0 ,,0 vi1,...,0,8in (24) and (2.5) such that for al N > 0 the Nth term My
of {My} isexpressed as

My =Ay+By= Y Pi® Q.+ By. (6.2)
The mapping <2 is then defined by

Q((My))(©) = ) (exp(ind)) Q. (6.3)

It is not difficult to see that this mapping iswell defined (cf. [20] for detailed discussion
on the mapping €2, cf. also remark 6.1 given later in this section).

Givenany {My} € X,(q), wecaled F = Q({My}) € Hy(q) the FS map associ-
ated with the repeat sequence {My}. A closed interval I C R was said to be compatible
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with F if I contains al the eigenvalues of F(9) for all & € R. The existence of such an
interval for any F' € H(q) will be clear in view of proposition 6.2(i) given below and
of the fact that F is a periodic mapping with the period 27, that is F(6) = F(0 + 2r)
foral 6 € R (cf. aso[20]).

In what follows, we provide the definitions of a standard apha sequence with
block-size ¢, and the standard a pha space with block-size ¢ denoted by X, (¢q), which
are important ingredients in the Compatibility Theorem given at the end of this sec-
tion.

Definitions 6.2. Let ¢ € Z*. An alpha sequence {Ay} € X,.(g) is caled a standard
alpha sequence with block-size ¢, or a standard element of X, (q), if there exist a non-
negative integer v and g x ¢ real matricesQ_,, O_,.1, ..., Q, such that

n=-—v

foradl N € Z*. (Notethat Q_, isthe transpose of Q, foradln € {0,1,..., v} since

Xa.(q) C X(q))
Foreach g € Z*, let X4,(g) denote the set of all standard elements of X, (g). The
X, (q) iscaled the standard alpha space with block-size g.

The following proposition illuminates the relationship between, X, (q), Xu(q),
Xo(q), and Xz (q), and is aso helpful to see the structure of the mapping 2 defined
above (cf. remark 6.1).

Proposition 6.1. For each ¢ € Z*, we have
() Xu.(q) formsalinear subspace of X,(q) and of X, (g).
(i) X,(qg) isthedirect sum of its linear subspaces X, (q) and Xz(q):
X, (@) = Xu(q) + Xp(q). (6.5

Proof. (i) The conclusion easily follows from the definitions of X, (¢), X.(¢), and
X:(q).

(ii) Note that
X, (q) = span(Xu(q) U Xp(q)), (6.6)
where span denotes the linear span. We seethat (i) istrue since X, (¢) N Xg(q) consists
of asingle repeat sequence whose NthtermisgN x gN zero matrix. O

Remark 6.1. Proposition 6.1(ii) implies that any element {My} of X,(q) is expressed
uniquely asthe sum of {Ay} € Xy, (g) and {By} € Xp(q). Letpri: X, (q) — Xu(q)
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denote the first projection, pry({My}) = {An}. Let Qo: X4 (q) — Hy(g) denote the
mapping defined by

Qo({ Y P® Qn])(G) = > (exp(in®)) Q. (6.7)

n=-—v n=-—v

Then, the mapping ©: X, (q) — H(q) defined previoudly is expressed in terms of 2o
and pry:

Q= Qpopr;. (6.8)
The following proposition is going to be used in the Compatibility Theorem.

Proposition 6.2. Supposethat {Ay} € X4,(g) and that Ay isgiven by
Ay= > Pi® Q. (6.9)

fordl N € Z*, where v is a nonnegative integer and Q_,, O _,;1,..., Q, &€ g X q
real matrices such that Q _,, isthetranspose of Q,, foraln € {0,1, ..., v}. Let F bethe
FS-map associated with the {Ay}, i.e., let F € H;(q) be amapping defined by

v

F©) =Y (exp(in6)) Q.. (6.10)

n=—v

6 € R. Definefunctions; :R — R, j € {1,...,q} by
hyj(©) =2 (F(6)), (6.11)

where A ;(F(0)) denotes the jth eigenvalue of the Hermitian matrix F(6) counting the
multiplicity, arranged in the increasing order. Then, we have:

(i) h; isLipschitz continuousfor all j € {1,...,q}.
(ii) Ay can be block-diagonalized asfollows:

Uy ® 1) " Ay(Uy ® 1)

s r(Z).H(Z2)r(2)) e

where Uy denotesthe N x N unitary matrix whose elements are

(Un)n = N™Y2 exp<anm ”'>, (6.13)

I, denotesthe g x g unit matrix.
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Proof. Both (i) and (ii) were proved in [20]. We reproduce here only the proof of (ii).
By using the fundamental properties of the Kronecker product and the elementary
equality for the diagonalization of Py:

_ i 2mi 21 2 27 Ni
UytPyUy = dlag(exp(T) exp(T> s exp(T>> =Dy, (6.14)

equality (6.12) can be easily verified. In fact, by inserting Py = UNDNU;l into Ay =
Yr_ Ph® Q,, oneobtains

n=—v

Y

Ay = Z (UnDNUZY)" ® (1,041,)

=(Uy®1,) ( > Dy® Q,,) (Uyt® 1), (6.15)
from which (6.12) follows immediately. g

Now we are ready to state the Compatibility Theorem, whose proof shall be given
in the next section.

Theorem 6.1 (Compatibility Theorem, X, (¢) version). Let {My} € X,(q) be arepest
sequence and let {Ay} € X4, (q) be the standard apha sequence with {My} — {Ay} €
Xg(q). Let F bethe FS map associated with {Ay}. Then, we have

(i)

U o(F®) = o@m. (6.16)
0o 2 N21
(i)
U o(F®) c | oy). (6.17)
0o 2 N21

(iii) Supposethat I isaclosed interval compatible with {My}. Then, I iscompat-
ible with both {Ay} and F.

Before proceeding to the next section, we give a proof of statement | in section 4.

Proof of statement |. The validity of statement | follows from part (iii) of theo-
rem6.1. O
7.  Proof of the Compatibility Theorem

Before proving the Compatibility Theorem, we recall the following lemma, which
was established and utilized in [27] for the first time to estimate quantum boundary
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effects in polymeric molecules. Thislemma plays a crucia role in proving the Compat-
ibility Theorem.

Lemma7.1l.Letn € Z* withn > 2 let K = {ki, ko, ..., k.} be a subset of
{1,2,...,n}consisting of r distinct elements (1 < r < n),andlet L ={1,2,...,n}\K.
Let M and M’ ben x n Hermitian matrices such that the i jth entries of M and M’ coin-
cideforal (i, j) € L x L, i.e., such that

(M-M), =0 (7.1
fordl (i,j) € L x L. Let I = [a, b] be a closed interval which contains al the
eigenvalues of both M and M’. Then, we have

|Tr(p(M) — Tr(p(M/)| < rVi(p) (7.2
foral ¢ € BV(I).

Proof. Thislemmais equivaent to lemma 2, proved in [27, chapter 7, p. 201]. (For
the proofs essentialy identical with the first proof in [27], the reader is referred to [28,
p. 233] and [33, p. 62].) O

Remark 7.1. In [33], the above lemma 7.1 and the “«—p sequence decomposition ap-
proach” from the RST played a crucial role in investigating the asymptotics of eigen-
values of Toeplitz matrices and also to form, for the first time, a connection between
the study of Toeplitz matrices and the RST (cf. [33] and references therein). The reader
who isinterested in the above mentioned connection isalso referred to [34]. We note that
section 5.8, entitled “Zizler, Zuidwijk, Taylor, Arimoto” in monograph [34], expounds
the extension of the main resultsin [33] from eigenvalues to singular values for arbitrary
band Toeplitz matrices.

Now we are ready to give a proof of the Compatibility Theorem (theorem 6.1)
stated at the end of section 6.

Proof of theorem6.1. (i) Let6 € [0, 27 ] and let /;(9) denote the jth eigenvalue of the
Hermitian matrix F(6) counting the multiplicity, arranged in the increasing order:

hj(0) = 1;(F(©)), (7.3)
where j € {1,..., g}. Weknow that

(@ The function 4 :[0,2r] — R defined by (7.3) is continuous for all j €
{1,...,q9}.

(b) For N € Z*, the eigenvalues of g N x g N real symmetric matrix A counting
the multiplicity are:

2l 2 N 2l 2 N
hil—1),...,h seeshgl— ), .. h | —— ). 7.4
1<N> 1<N> "(N) "<N> (74)
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(Recall proposition 6.2.)

Let
o

LN:={TF: re {1,...,N}}, (7.5)

L:=]Ly. (7.6)
N>1

Thus, using the easily verifiable relations

(U ) =U e, )
N>1

N2>1
L =0, 2], (7.8)
we get
q
U o@am={Jnrw. (7.9)
N>1 j—l
U o(F®) Uh @). (7.10)

0o 2

Note that 1;(L) is compact for al j € (1,...,q}, soweseethat | JI_; h;(L) isa
closed set inR. Hence, (<o, 0 (F(0)) isaclosed setin R:

U oc(F®)= |J o(F®). (7.12)
0<o<2r 0<o<2r
By (7.9)«7.11), we obtain
U o(F®) > o). (7.12)
0<o0<L 2 NZ>1

The opposite inclusion follows easily from the fundamental properties of the closure
operation and the relation (L) D h;(L), which istrue by the continuity of 4 ;:

Uon=

N>1

h;(L)

!
U@
qu = | o(Fo). (7.13)
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(i) Letk € {1,...,q} and 6 € [0, 2] be arbitrary. For the proof of (ii), we then
have only to show that

hi0) € | o(My). (7.14)
N>1
Let 7 beaclosed interval compatible with both {My} and {Ay}. By (6.16), we see that
the compatibility of I with {Ay},i.e,
Joam c1 (7.15)
N>1

implies that the following relations hold:
q -
Uri(0.22)) = | o(F®)=]o@w cL. (7.16)
j=1 0<o<L2r N>1

So, the range of the function 4, : [0, 2r] — R iscontained in / for all j € {1,...,g}.
Hence, if U isany subset of R, thenforany j € {1, ..., ¢}, we have

AU NT) =h7HU) NI = k7N U) N[0, 22] = b (U). (7.17)

Now we need the following

Proposition 7.1. The notation and assumptions being as above, if ¢ € BV (1), then
Tro(My) —Tre(Ay) = O(1) (7.18)

aS N — oo.

Proof of proposition 7.1. Since {My — Ay} € Xz(q), the conclusion directly follows
from lemma7.1. O

Let ¢ > O bearbitrary, let

U, = (hi(0) — &, hi(0) + ¢), (7.19)
and define ¢, € BV(I) by
¢: = Lu.nr, (7.20)
where 1y, ~; stands for the characteristic function of theset U, N 1.
We claim that
Trée(Ay) — o0 (7.21)

as N — oo. Noticethat (7.4) and (7.17) imply that

q
Tro.(Ay) =) _ Card(Ly Nh; (U N 1))
j=1
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q
=Y Cad(Ly Nh; U.))
j=1

> Card(Ly N hi Y(UL)). (7.22)
But, hk‘l(Ug) is an open neighborhood of 6 by the continuity of %, hence
Card(Ly N M (U,)) — oo (7.23)

as N — oo. Thus, our claim istrue.
By (7.18) and our claim just verified, we have

Tro.(My) — o0 (7.24)
as N — oo. Thisobviously shows that

U.No(My) # 2, (7.25)
for some N € Z™, hence that
U, N (U U(MN)> £ O. (7.26)
N>1

Since ¢ > 0 was arbitrary, (7.14) istrue.
(iii) Suppose that 7 isaclosed interval compatible with {My}. Then, we have

U o(My) C 1. (7.27)

N>1

Hence by using (i) and (ii), we see that

UecancJoan= |J o(F®)c|JomncT=1 (7.28)

N>1 N>1 0<o<2n N>1

This completes the proof of theorem 6.1. a

8. Concluding remarks

Among the proofs of the Functional ALT, with varying degrees of dependence on
the Origina ALT, isaproof that fully depends on the Original ALT, and at the sametime,
uses the well-known Banach-Steinhaus theorem. The proof along these lines requires
the argument of the completeness of functional spaces; its details will be published el se-
where.

The present method of proving the Functional ALT for X, (¢), viathe Compatibil-
ity Theorem and theorem 4.3 can also be applied to the extended theoretical framework
of the generalized repeat space %, (¢, d). We note that the Fukui conjecture, which was
formulated in the setting of the origina repeat space X, (g), continues to be of vita
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significance in view of the analogous statement in the extended setting of the general-
ized repeat space %, (g, d). The development of the ALT in the latter setting shall be
published elsewhere.
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